Enhanced EGFP-chromophore-assisted laser inactivation using deficient cells rescued with functional EGFP-fusion proteins.

نویسندگان

  • Eric A Vitriol
  • Andrea C Uetrecht
  • Feimo Shen
  • Ken Jacobson
  • James E Bear
چکیده

Chromophore-assisted laser inactivation (CALI) is a light-mediated technique that offers precise spatiotemporal control of protein inactivation, enabling better understanding of the protein's role in cell function. EGFP has been used effectively as a CALI chromophore, and its cotranslational attachment to the target protein avoids having to use exogenously added labeling reagents. A potential drawback to EGFP-CALI is that the CALI phenotype can be obscured by the endogenous, unlabeled protein that is not susceptible to light inactivation. Performing EGFP-CALI experiments in deficient cells rescued with functional EGFP-fusion proteins permits more complete loss of function to be achieved. Here, we present a modified lentiviral system for rapid and efficient generation of knockdown cell lines complemented with physiological levels of EGFP-fusion proteins. We demonstrate that CALI of EGFP-CapZbeta increases uncapped actin filaments, resulting in enhanced filament growth and the formation of numerous protrusive structures. We show that these effects are completely dependent upon knocking down the endogenous protein. We also demonstrate that CALI of EGFP-Mena in Mena/VASP-deficient cells stabilizes lamellipodial protrusions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional reconstitution of vascular smooth muscle cells with cGMP-dependent protein kinase I isoforms.

The cGMP-dependent protein kinase type I (cGKI) is a major mediator of NO/cGMP-induced vasorelaxation. Smooth muscle expresses two isoforms of cGKI, cGKIalpha and cGKIbeta, but the specific role of each isoform in vascular smooth muscle cells (VSMCs) is poorly understood. We have used a genetic deletion/rescue strategy to analyze the functional significance of cGKI isoforms in the regulation of...

متن کامل

A functional chimaeric S-layer-enhanced green fluorescent protein to follow the uptake of S-layer-coated liposomes into eukaryotic cells.

The chimaeric gene encoding a C-terminally truncated form of the S-layer protein SbpA of Bacillus sphaericus CCM 2177 and the EGFP (enhanced green fluorescent protein) was ligated into plasmid pET28a and cloned and expressed in Escherichia coli. Just 1 h after induction of expression an intense EGFP fluorescence was detected in the cytoplasm of the host cells. Expression at 28 degrees C instead...

متن کامل

Isolation and Characterization of a New Peroxisome Deficient CHO Mutant Cell Belonging to Complementation Group 12

We searched for novel Chinese hamster ovary (CHO) cell mutants defective in peroxisome biogenesis by an improved method using peroxisome targeting sequence (PTS) of Pex3p (amino acid residues 1–40)-fused enhanced green fluorescent protein (EGFP). From mutagenized TKaEG3(1–40) cells, the wild-type CHO-K1 stably expressing rat Pex2p and of rat Pex3p(1–40)-EGFP, numerous cell colonies resistant to...

متن کامل

Flavin Mononucleotide-Based Fluorescent Proteins Function in Mammalian Cells without Oxygen Requirement

Usage of the enhanced green fluorescent protein (eGFP) in living mammalian cells is limited to aerobic conditions due to requirement of oxygen during chromophore formation. Since many diseases or disease models are associated with acute or chronic hypoxia, eGFP-labeling of structures of interest in experimental studies might be unreliable leading to biased results. Thus, a chromophore yielding ...

متن کامل

Human cord blood CD34+ progenitor cells acquire functional cardiac properties through a cell fusion process.

The efficacy of cardiac repair by stem cell administration relies on a successful functional integration of injected cells into the host myocardium. Safety concerns have been raised about the possibility that stem cells may induce foci of arrhythmia in the ischemic myocardium. In a previous work (36), we showed that human cord blood CD34(+) cells, when cocultured on neonatal mouse cardiomyocyte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 104 16  شماره 

صفحات  -

تاریخ انتشار 2007